898 research outputs found

    Interplay between disorder and local field effects in photonic crystal waveguides

    Full text link
    We introduce a theory to describe disorder-induced scattering in photonic crystal waveguides, specifically addressing the influence of local field effects and scattering within high-index-contrast perturbations. Local field effects are shown to increase the predicted disorder-induced scattering loss and result in significant resonance shifts of the waveguide mode. We demonstrate that two types of frequency shifts can be expected, a mean frequency shift and a RMS frequency shift, both acting in concert to blueshift and broaden the nominal band structure. For a representative waveguide, we predict substantial meV frequency shifts and band structure broadening for a telecommunications operating frequency, even for state of the art fabrication. The disorder-induced broadening is found to increase as the propagation frequency approaches the slow light regime (mode edge) due to restructuring of the electric field distribution. These findings have a dramatic impact on high-index-contrast nanoscale waveguides, and, for photonic crystal waveguides, suggest that the nominal slow-light mode edge may not even exist. Furthermore, our results shed new light on why it has hitherto been impossible to observe the very slow light regime for photonic crystal waveguides.Comment: 4 page lette

    Coherent states, Path integral, and Semiclassical approximation

    Get PDF
    Using the generalized coherent states we argue that the path integral formulae for SU(2)SU(2) and SU(1,1)SU(1,1) (in the discrete series) are WKB exact,if the starting point is expressed as the trace of e−iTH^e^{-iT\hat H} with H^\hat H being given by a linear combination of generators. In our case,WKB approximation is achieved by taking a large ``spin'' limit: J,K→∞J,K\rightarrow \infty. The result is obtained directly by knowing that the each coefficient vanishes under the J−1J^{-1}(K−1K^{-1}) expansion and is examined by another method to be legitimated. We also point out that the discretized form of path integral is indispensable, in other words, the continuum path integral expression leads us to a wrong result. Therefore a great care must be taken when some geometrical action would be adopted, even if it is so beautiful, as the starting ingredient of path integral.Comment: latex 33 pages and 2 figures(uuencoded postscript file), KYUSHU-HET-19 We have corrected the proof of the WKB-exactness in the section

    Final-state read-out of exciton qubits by observing resonantly excited photoluminescence in quantum dots

    Full text link
    We report on a new approach to detect excitonic qubits in semiconductor quantum dots by observing spontaneous emissions from the relevant qubit level. The ground state of excitons is resonantly excited by picosecond optical pulses. Emissions from the same state are temporally resolved with picosecond time resolution. To capture weak emissions, we greatly suppress the elastic scattering of excitation beams, by applying obliquely incident geometry to the micro photoluminescence set-up. Rabi oscillations of the ground-state excitons appear to be involved in the dependence of emission intensity on excitation amplitude.Comment: 4 pages, 4 figures, to appear in Appl. Phys. Let

    A novel view of plane wave expansion method in photonic crystals

    Full text link
    We propose a method derived from the simple plane wave expansion that can easily solve the interface problem between vacuum and a semi-infinite photonic crystal. The method is designed to find the complete set of all the eigenfunctions, propagating or evanescent, of the translation operators {TR}\{{\bf T_R} \}, at a fixed frequency. With these eigenfunctions and their eigenvalues, the transmitted and reflected waves can be determined. Two kinds of applications are presented for 2D photonic crystals. The first is a selection rule for determine the normal direction of the vacuum-photonic crystal interface to achieve the highest attenuation effect at a gap frequency. The second is to calculate the transmittance and reflectance for a light incident from vacuum to an semi-infinite photonic crystal. As an example we recalculate a system studied previously by K. Sakoda et al. and get results in agreement with theirs

    Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide

    Full text link
    A deterministic design of an ultrahigh Q, wavelength scale mode volume photonic crystal nanobeam cavity is proposed and experimentally demonstrated. Using this approach, cavities with Q>10^6 and on-resonance transmission T>90% are designed. The devices fabricated in Si and capped with low-index polymer, have Q=80,000 and T=73%. This is, to the best of our knowledge, the highest transmission measured in deterministically designed, wavelength scale high Q cavities

    Symmetry characterization of eigenstates in opal-based photonic crystals

    Full text link
    The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident external plane wave. Our prediction is supported by layer-KKR calculations, which are also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review

    Theory of disorder-induced multiple coherent scattering in photonic crystal waveguides

    Full text link
    We introduce a theoretical formalism to describe disorder-induced extrinsic scattering in slow-light photonic crystal waveguides. This work details and extends the optical scattering theory used in a recent \emph{Physical Review Letter} [M. Patterson \emph{et al.}, \emph{Phys. Rev. Lett.} \textbf{102}, 103901 (2009)] to describe coherent scattering phenomena and successfully explain complex experimental measurements. Our presented theory, that combines Green function and coupled mode methods, allows one to self-consistently account for arbitrary multiple scattering for the propagating electric field and recover experimental features such as resonances near the band edge. The technique is fully three-dimensional and can calculate the effects of disorder on the propagating field over thousands of unit cells. As an application of this theory, we explore various sample lengths and disordered instances, and demonstrate the profound effect of multiple scattering in the waveguide transmission. The spectra yield rich features associated with disorder-induced localization and multiple scattering, which are shown to be exasperated in the slow light propagation regime

    Polarization switching and nonreciprocity in symmetric and asymmetric magnetophotonic multilayers with nonlinear defect

    Full text link
    A one-dimensional magnetophotonic crystal with a nonlinear defect placed either symmetrically or asymmetrically inside the structure is considered. Simultaneous effects of time-reversal nonreciprocity and nonlinear spatial asymmetry in the structure are studied. Bistable response is demonstrated in a such system, accompanied by abrupt polarization switching between two circular or elliptical polarizations for transmitted and reflected waves. The effect is explained in terms of field localization at defect-mode spectral resonances and can be used in the design of thin-film optical isolators and polarization transformation devices.Comment: 20 pages, 8 figure
    • 

    corecore